bayes_opt.parameter

Parameter classes for Bayesian optimization.

class bayes_opt.parameter.BayesParameter(name: str, bounds: ndarray[Any, dtype[Any]]) None

Base class for Bayesian optimization parameters.

Parameters:
name : str

The name of the parameter.

bounds : NDArray[Any]

property bounds : ndarray[Any, dtype[Any]]

The bounds of the parameter in float space.

abstract property dim : int

The dimensionality of the parameter.

abstract property is_continuous : bool

Whether the parameter is continuous.

abstract kernel_transform(value: ndarray[Any, dtype[floating[Any]]]) ndarray[Any, dtype[floating[Any]]]

Transform a parameter value for use in a kernel.

Parameters:
value : np.ndarray

The value(s) to transform, should be a float.

Return type:

ndarray[Any, dtype[floating[Any]]]

Returns:

np.ndarray

random_sample(n_samples: int, random_state: RandomState | int | None) ndarray[Any, dtype[floating[Any]]]

Generate random samples from the parameter.

Parameters:
n_samples : int

The number of samples to generate.

random_state : np.random.RandomState | int | None

The random state to use for sampling.

Return type:

ndarray[Any, dtype[floating[Any]]]

Returns:

np.ndarray – The samples.

abstract to_float(value: Any) float | ndarray[Any, dtype[floating[Any]]]

Convert a parameter value to a float.

Parameters:
value : Any

The value to convert, should be the canonical representation of the parameter.

Return type:

float | ndarray[Any, dtype[floating[Any]]]

abstract to_param(value: float | ndarray[Any, dtype[floating[Any]]]) Any

Convert a float value to a parameter.

Parameters:
value : np.ndarray

The value to convert, should be a float.

Return type:

Any

Returns:

Any – The canonical representation of the parameter.

to_string(value: Any, str_len: int) str

Represent a parameter value as a string.

Parameters:
value : Any

The value to represent.

str_len : int

The maximum length of the string representation.

Return type:

str

Returns:

str

class bayes_opt.parameter.CategoricalParameter(name: str, categories: Sequence[Any]) None

A parameter with categorical values.

Parameters:
name : str

The name of the parameter.

categories : Sequence[Any]

The categories of the parameter.

property dim : int

The dimensionality of the parameter.

property is_continuous : bool

Whether the parameter is continuous.

kernel_transform(value: ndarray[Any, dtype[floating[Any]]]) ndarray[Any, dtype[floating[Any]]]

Transform a parameter value for use in a kernel.

Parameters:
value : np.ndarray

The value(s) to transform, should be a float.

Return type:

ndarray[Any, dtype[floating[Any]]]

Returns:

np.ndarray

random_sample(n_samples: int, random_state: RandomState | int | None) ndarray[Any, dtype[floating[Any]]]

Generate random float-format samples from the parameter.

Parameters:
n_samples : int

The number of samples to generate.

random_state : np.random.RandomState | int | None

The random state to use for sampling.

Return type:

ndarray[Any, dtype[floating[Any]]]

Returns:

np.ndarray – The samples.

to_float(value: Any) ndarray[Any, dtype[floating[Any]]]

Convert a parameter value to a float.

Parameters:
value : Any

The value to convert, should be the canonical representation of the parameter.

Return type:

ndarray[Any, dtype[floating[Any]]]

to_param(value: float | ndarray[Any, dtype[floating[Any]]]) Any

Convert a float value to a parameter.

Parameters:
value : np.ndarray

The value to convert, should be a float.

Return type:

Any

Returns:

Any – The canonical representation of the parameter.

to_string(value: Any, str_len: int) str

Represent a parameter value as a string.

Parameters:
value : Any

The value to represent.

str_len : int

The maximum length of the string representation.

Return type:

str

Returns:

str

class bayes_opt.parameter.FloatParameter(name: str, bounds: tuple[float, float]) None

A parameter with float values.

Parameters:
name : str

The name of the parameter.

bounds : tuple[float, float]

The bounds of the parameter.

property dim : int

The dimensionality of the parameter.

property is_continuous : bool

Whether the parameter is continuous.

kernel_transform(value: ndarray[Any, dtype[floating[Any]]]) ndarray[Any, dtype[floating[Any]]]

Transform a parameter value for use in a kernel.

Parameters:
value : np.ndarray

The value(s) to transform, should be a float.

Return type:

ndarray[Any, dtype[floating[Any]]]

Returns:

np.ndarray

to_float(value: float) float

Convert a parameter value to a float.

Parameters:
value : Any

The value to convert, should be the canonical representation of the parameter.

Return type:

float

to_param(value: float | ndarray[Any, dtype[floating[Any]]]) float

Convert a float value to a parameter.

Parameters:
value : np.ndarray

The value to convert, should be a float.

Return type:

float

Returns:

Any – The canonical representation of the parameter.

to_string(value: float, str_len: int) str

Represent a parameter value as a string.

Parameters:
value : Any

The value to represent.

str_len : int

The maximum length of the string representation.

Return type:

str

Returns:

str

class bayes_opt.parameter.IntParameter(name: str, bounds: tuple[int, int]) None

A parameter with int values.

Parameters:
name : str

The name of the parameter.

bounds : tuple[int, int]

The bounds of the parameter.

property dim : int

The dimensionality of the parameter.

property is_continuous : bool

Whether the parameter is continuous.

kernel_transform(value: ndarray[Any, dtype[floating[Any]]]) ndarray[Any, dtype[floating[Any]]]

Transform a parameter value for use in a kernel.

Parameters:
value : np.ndarray

The value(s) to transform, should be a float.

Return type:

ndarray[Any, dtype[floating[Any]]]

Returns:

np.ndarray

random_sample(n_samples: int, random_state: RandomState | int | None) ndarray[Any, dtype[floating[Any]]]

Generate random samples from the parameter.

Parameters:
n_samples : int

The number of samples to generate.

random_state : np.random.RandomState | int | None

The random state to use for sampling.

Return type:

ndarray[Any, dtype[floating[Any]]]

Returns:

np.ndarray – The samples.

to_float(value: int | float) float

Convert a parameter value to a float.

Parameters:
value : Any

The value to convert, should be the canonical representation of the parameter.

Return type:

float

to_param(value: int | float | ndarray[Any, dtype[integer[Any]]] | ndarray[Any, dtype[floating[Any]]]) int

Convert a float value to a parameter.

Parameters:
value : np.ndarray

The value to convert, should be a float.

Return type:

int

Returns:

Any – The canonical representation of the parameter.

bayes_opt.parameter.is_numeric(value: Any) bool

Check if a value is numeric.

Return type:

bool

Parameters:
value : Any

bayes_opt.parameter.wrap_kernel(kernel: Kernel, transform: Callable[[Any], Any]) Kernel

Wrap a kernel to transform input data before passing it to the kernel.

Parameters:
kernel : kernels.Kernel

The kernel to wrap.

transform : Callable

The transformation function to apply to the input data.

Return type:

Kernel

Returns:

kernels.Kernel – The wrapped kernel.

Notes

See https://arxiv.org/abs/1805.03463 for more information.