bayes_opt.SequentialDomainReductionTransformer
¶
See the Sequential Domain Reduction notebook for a complete example.
-
class bayes_opt.SequentialDomainReductionTransformer(gamma_osc: float =
0.7
, gamma_pan: float =1.0
, eta: float =0.9
, minimum_window: NDArray[Float] | collections.abc.Sequence[float] | Mapping[str, float] | float =0.0
) None ¶ Reduce the searchable space.
A sequential domain reduction transformer based on the work by Stander, N. and Craig, K: “On the robustness of a simple domain reduction scheme for simulation-based optimization”
- Parameters:¶
- gamma_osc : float, default=0.7¶
Parameter used to scale (typically dampen) oscillations.
- gamma_pan : float, default=1.0¶
Parameter used to scale (typically unitary) panning.
- eta : float, default=0.9¶
Zooming parameter used to shrink the region of interest.
- minimum_window : float or np.ndarray or dict, default=0.0¶
Minimum window size for each parameter. If a float is provided, the same value is used for all parameters.
- initialize(target_space: TargetSpace) None ¶
Initialize all of the parameters.
- Parameters:¶
- target_space : TargetSpace¶
TargetSpace this DomainTransformer operates on.
- Return type:¶
- transform(target_space: TargetSpace) dict[str, ndarray[Any, dtype[floating[Any]]]] ¶
Transform the bounds of the target space.