bayes_opt.SequentialDomainReductionTransformer¶
See the Sequential Domain Reduction notebook for a complete example.
- 
class bayes_opt.SequentialDomainReductionTransformer(parameters: Iterable[str] | None = None, gamma_osc: float =0.7, gamma_pan: float =1.0, eta: float =0.9, minimum_window: NDArray[Float] | collections.abc.Sequence[float] | Mapping[str, float] | float =0.0) None¶
- Reduce the searchable space. - A sequential domain reduction transformer based on the work by Stander, N. and Craig, K: “On the robustness of a simple domain reduction scheme for simulation-based optimization” - Parameters:¶
- gamma_osc : float, default=0.7¶
- Parameter used to scale (typically dampen) oscillations. 
- gamma_pan : float, default=1.0¶
- Parameter used to scale (typically unitary) panning. 
- eta : float, default=0.9¶
- Zooming parameter used to shrink the region of interest. 
- minimum_window : float or np.ndarray or dict, default=0.0¶
- Minimum window size for each parameter. If a float is provided, the same value is used for all parameters. 
- parameters : Iterable[str] | None¶
 
 - initialize(target_space: TargetSpace) None¶
- Initialize all of the parameters. - Parameters:¶
- target_space : TargetSpace¶
- TargetSpace this DomainTransformer operates on. 
 
- Return type:¶